High-Dimensional Principal Projections

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-Dimensional Principal Projections

The Principal Component Analysis (PCA) is a famous technique from multivariate statistics. It is frequently carried out in dimension reduction either for functional data or in a high dimensional framework. To that aim PCA yields the eigenvectors (φ̂i)i of the covariance operator of a sample of interest. Dimension reduction is obtained by projecting on the eigenspaces spanned by the φ̂i’s usually ...

متن کامل

High-dimensional Principal Component Analysis

High-dimensional Principal Component Analysis by Arash Ali Amini Doctor of Philosophy in Electrical Engineering University of California, Berkeley Associate Professor Martin Wainwright, Chair Advances in data acquisition and emergence of new sources of data, in recent years, have led to generation of massive datasets in many fields of science and engineering. These datasets are usually characte...

متن کامل

Manual Controls For High-Dimensional Data Projections

Projections of high-dimensional data onto low-dimensional subspaces provide insightful views for understanding multivariate relationships. In this paper we discuss how to manually control the variable contributions to the projection. The user has control of the way a particular variable contributes to the viewed projection and can interactively adjust the variable's contribution. These manual c...

متن کامل

Randomized Nonlinear Projections Uncover High-Dimensional Structure

We consider the problem of investigating the ‘‘structure’’ of a set of points in Ž . high-dimensional space n points in d-dimensional Euclidean space when n < d. The analysis of such data sets is a notoriously difficult problem in both combinatorial optimization and statistics due to an exponential explosion in d. A randomized nonlinear projection method is presented that maps these observation...

متن کامل

High Dimensional Dataset Compression Using Principal Components

Until recently, computational power was insufficient to diagonalize atmospheric datasets of order 10 10 elements. Eigenanalysis of tens of thousands of variables now can achieve massive data compression for spatial fields with strong correlation properties. Application of eigenanalysis to 26,394 variable dimensions, for three severe weather datasets (tornado, hail and wind) retains 9 11 princip...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Complex Analysis and Operator Theory

سال: 2014

ISSN: 1661-8254,1661-8262

DOI: 10.1007/s11785-014-0371-5